MEDDAILY.INFO
медицинская энциклопедия
ГлавнаяКарта сайта Контакты
 

Наследственные болезни обмена веществ

Наследственные болезни обмена веществ — обширный класс наследственных заболеваний человека, включающий более 600 различных форм. Количество новых форм болезней обмена веществ и даже классов растет с каждым годом, экспоненциально возрастает количество публикаций, связанных с возможностями диагностики, профилактики и, что немаловажно, лечения болезней обмена веществ. Отдельные формы болезней обмена веществ встречаются редко или крайне редко, однако их суммарная частота довольно высока и составляет 1:3000-1:5000 живых новорожденных. Характерным свойством этих заболеваний являются выраженные биохимические изменения, которые проявляются до начала первых клинических симптомов.

Согласно биохимической классификации, болезни обмена веществ разделены на 22 группы в зависимости от типа поврежденного метаболического пути (аминоацидопатии, нарушения углеводного обмена и т.


д.) или в зависимости от его локализации в пределах определенного компонента клетки (лизосомные, пероксисомные и митохондриальные болезни).

Биохимическая классификация болезней обмена веществ выглядит следующим образом.
• Лизосомные болезни накопления.
• Митохондриальные болезни.
• Пероксисомные болезни.
• Врожденные нарушения гликозилирования.
• Нарушения обмена креатинина.
• Нарушения обмена холестерина.
• Нарушения синтеза цитокинов и других иммуномодуляторов.
• Нарушения обмена аминокислот/органических кислот.
• Нарушения митохондриального b-окисления.
• Нарушения обмена кетоновых тел.
• Нарушения обмена жиров и жирных кислот, липопротеинов.
• Нарушения обмена углеводов и гликогена.
• Нарушения транспорта глюкозы.
• Нарушения обмена глицерина.
• Нарушения обмена витаминов.
• Нарушения обмена металлов и анионов.
• Нарушения обмена желчных кислот.
• Нарушения обмена нейротрансмиттеров.
• Нарушения обмена стероидов и других гормонов.
• Нарушения обмена гема и порфиринов.
• Нарушения обмена пуринов/пиримидинов.
• Нарушения обмена билирубина.

Основные механизмы патогенеза болезней обмена веществ
НАКОПЛЕНИЕ СУБСТРАТА
Накопление субстрата блокированной ферментной реакции является одним из основных механизмов патогенеза при подавляющем большинстве болезни обмена веществ.


Прежде всего это относится к нарушению катаболических реакций, таких как расщепление крупных макромолекул, аминокислот, органических кислот и т. д. Если накапливаемый субстрат легко выводится из клеток и его концентрация в биологических жидкостях во много раз превышает гомеостатический уровень, может изменяться кислотно-щелочное равновесие (органические кислоты при органических ацидуриях), происходить его накопление в разных тканях (гомогентизиновая кислота при алкаптонурии). В ряде случаев субстрат создает конкуренцию сходным соединениям при транспорте через гематоэнцефалический барьер, приводя к их истощению в мозге (аминоацидопатии). Если накапливаемый субстрат плохорастворим, происходит его накопление внутри клетки, что запускает механизмы апоптотической гибели. Одним из дополнительных следствий накопления субстрата может быть активация минорных метаболических путей, чей удельный вес при нормальном метаболизме незначителен. Такой механизм, например, лежит в основе накопления фенилпиро-виноградной кислоты при фенилкетонурии.

Накапливаемые метаболиты имеют важное диагностическое значение, в ряде случаев их количественный или полуколичественный анализ позволяет точно установить форму заболевания. При органических ацидуриях и аминоацидопатиях накопление в больших количествах водорастворимых соединений в плазме крови и моче позволяет быстро провести их количественное или качественное определение с помощью хроматографических методов анализа.

НЕДОСТАТОЧНОСТЬ ПРОДУКТОВ РЕАКЦИИ
Недостаточность продуктов реакции — второй основной механизм патогенеза болезней обмена веществ. Причиной патологических изменений может быть непосредственно недостаточность продукта блокированной реакции. Например, при дефекте биотинидазы нарушается отщепление биотина от диетарных белков, и клинические проявления болезни связаны с недостатком этого витамина. Недостаточность продуктов реакции в циклическом процессе мочевины создает примечательную метаболическую ситуацию — некоторые аминокислоты из заменимых переходят в категорию незаменимых. Так, при аргинин-янтарной ацидурии наблюдается нарушение образования аргинина из аргинин-янтарной кислоты, что приводит к недостаточности аргинина и орнитина. В ряде случаев может возникать недостаточность более удаленного в данной метаболической цепи продукта, например альдостерона и кортизола, при адреногенитальном синдроме,

МЕТАБОЛИЧЕСКАЯ ИЗОЛЯЦИЯ
В отдельную группу необходимо выделить заболевания, связанные с метаболической изоляцией продукта реакции. Это основной механизм патогенеза при нарушениях белков-переносчиков, которые не являются ферментами, но участвуют в регуляции определенной биохимической реакции. Каскад метаболических событий, который запускается при этих болезнях, имеет сходные для организма и клетки последствия. Синдром гиперорнитинемия – гипераммониемия – гомоцитруллинурия (акроним от трех основных биохимических маркеров — Hyperammonemia, Hyperornithinemia, Homocitrullinemia) связан с нарушением транспорта орнитина. В результате наблюдается недостаточность орнитина внутри митохондрий, что приводит к накоплению карбамоилфосфата и аммония.

Выделить единственный ведущий механизм патогенеза практически невозможно, поскольку метаболические процессы тесно взаимосвязаны. Как правило, наблюдается сочетание всех описанных механизмов, и при каждом из фермента-тивных блоков происходят значительные изменения во всей метаболической сети клетки.

Лабораторная диагностика наследственных болезней обмена веществ
Дифференциальная диагностика наследственных болезней обмена веществ целиком зависит от применения необычайно широкого спектра биохимических, физико-химических и молекулярно-генетических методов. В большинстве случаев только сочетанная интерпретация всех полученных результатов дает возможность точно определить форму заболевания. Как правило, общая стратегия диагностики наследственных болезней обмена веществ включает несколько этапов.

I — выявление дефектного звена метаболического пути посредством анализа (количественного, полуколичественного или качественного) метаболитов.
II — выявление дисфункции белка определением его количества и/или активности.
III — выяснение природы мутации, т. е. характеристика мутантного аллеля на уровне гена.

Такую стратегию применяют не только для решения проблем, касающихся изучения молекулярных механизмов патогенеза наследственных болезней обмена веществ, выявления генофенотипических корреляций, она необходима прежде всего для практической диагностики наследственных болезней обмена веществ. 

Верифицировать диагноз на уровне белка и мутантного гена необходимо как для проведения пренатальной диагностики, медико-генетического консультирования отягощенных семей, так и в ряде случаев для назначения адекватной терапии. Например, при недостаточности дегидроптеридинредуктазы клинический фенотип и уровни фенилаланина будут неотличимы от классической формы фенилкетонурии, но подходы к терапии этих заболеваний принципиально отличаются. Важность локусной дифференциации наследственных болезней обмена веществ для медико-генетического консультирования может быть проиллюстрирована на примере мукополисахаридоза II типа (болезни Хантера). По спектру экскретируемых гликозаминогликанов невозможно различить мукополисахаридозы I, II и VII типа, но из этих заболеваний только болезнь Хантера наследуется по Х-сцепленному рецессивному типу, что имеет принципиальное значение для прогноза потомства в семье с отягощенным анамнезом. Что касается пренатальной диагностики, то, имея данные о форме мукополисахаридоза (это может быть установлено только при исследовании активности ферментов), возможно проведение пренатальной диагностики уже на 8-11-й неделе беременности, если же форма не уточнена, то только на 20-й неделе. Безусловна приоритетность молекулярно-генетических методов при установлении гетерозиготного носительства, а также в пренатальной диагностике заболеваний, при которых мутантный фермент не экспрессируется в клетках ворсин хориона, например при фенилкетонурии, некоторых гликогенозах, дефектах митохондриального р-окисления.

ВЫЯВЛЕНИЕ ДЕФЕКТНОГО ЗВЕНА МЕТАБОЛИЧЕСКОГО ПУТИ
Анализ метаболитов является важнейшим этапом в диагностике многих заболеваний из класса наследственных болезней обмена веществ. Прежде всего это относится к нарушениям межуточного обмена аминокислот и органических кислот. При большинстве этих заболеваний количественное определение метаболитов в биологических жидкостях позволяет точно установить диагноз. Для этих целей применяют методы качественного химического анализа, спектрофотометрические методы количественной оценки соединений, а также различные виды хроматографии (тонкослойную, высокоэффективную жидкостную, газовую, тандемную масс-спектрометрию). Биологическим материалом для этих исследований обычно служат плазма или сыворотка крови и образцы мочи.

При таких наследственных болезнях обмена веществ, как нарушения энергетического обмена, обмена углеводов и аминокислот, анализ соединений общих для многих метаболических путей (ключевых метаболитов) позволяет проводить дифференциальную диагностику заболеваний и планировать дальнейшую тактику обследования. Для многих групп наследственных болезней обмена веществ в целях определения концентрации метаболитов используют полуколичественный анализ. Иногда и качественный анализ является первым этапом диагностического поиска и позволяет с высокой достоверностью заподозрить определенную нозологическую форму заболевания или группу болезней.

КАЧЕСТВЕННЫЕ И ПОЛУКОЛИЧЕСТВЕННЫЕ ТЕСТЫ С МОЧОЙ
Поскольку при многих наследственных болезней обмена веществ происходит накопление субстратов блокированной ферментной реакции или их производных, избыточные концентрации этих метаболитов можно обнаружить с помощью химических тестов качественного анализа. Эти тесты чувствительны, просты в применении, отличаются низкой себестоимостью и не дают ложноотрицательных результатов, а информация, полученная при их применении, позволяет с высокой долей вероятности заподозрить наследственные болезней обмена веществ у пациента. Необходимо учитывать, что на результаты этих тестов оказывают влияние лекарственные препараты, пищевые добавки и их метаболиты. Тесты качественного анализа применяют в программах селективного скрининга.

Качественные тесты
Цвет и запах: лейциноз, тирозинемия, изовалериановая ацидемия, фенилкетонурия, алкаптонурия, цистинурия, З-гидрокси-З-метилглутаровая ацидурия.
Тест Бенедикта (галактоземия, врожденная непереносимость фруктозы, алкаптонурия). Также положительный при синдроме Фанкони, сахарном диабете, лактазной недостаточности, приеме антибиотиков.
Тест с хлоридом железа (фенилкетонурия, лейциноз, гиперглицинемия, алкаптонурия, тирозинемия, гистидинемия). Также положительный при циррозе печени, плеохромацитоме, гипербилирубинемии, лактат-ацидозе, кетоацидозе, меланоме.
Тест с динитрофенилгидразином (фенилкетонурия, лейциноз, гиперглицинемия, алкаптонурия). Также положительный при гликогенозах, лактат-ацидозе.
Тест с п-нитроанилином: метилмалоновая ацидурия.
Сульфитный тест: недостаточность молибденового кофактора.
Тест на гомогентизиновую кислоту: алкаптонурия.
Тест с нитрозонафтолом: тирозинемия. Также положительный при фруктоземии и галактоземии.

КЛЮЧЕВЫЕ МЕТАБОЛИТЫ
Для многих групп наследственных болезней обмена веществ важным этапом дифференциальной лабораторной диагностики является измерение концентрации определенных метаболитов в различных биологических жидкостях (крови, плазме, цереброспинальной жидкости и моче). К этим соединениям относят глюкозу, молочную кислоту (лактат), пировиноградную кислоту (пируват), аммоний, кетоновые тела b-гидроксибутират и ацетоацетат), мочевую кислоту. Концентрация этих соединений изменяется при многих наследственных болезней обмена веществ, и их комплексная оценка позволяет разработать алгоритмы дальнейшей лабораторной диагностики.

Лактат и пируват
Концентрации лактата, пирувата, а также кетоновых тел являются важнейшими показателями нарушений энергетического обмена. Известно около 25 нозологических форм наследственных болезней обмена веществ, при которых наблюдается повышение уровня лактата в крови (лактат-ацидоз).

Лактат-ацидоз — состояние, при котором уровень молочной кислоты превышает 2,1 мм. Первичный лактат-ацидоз может быть связан с недостаточностью пируватдегидрогеназы (пируватдегидрогеназного комплекса), нарушениями дыхательной цепи митохондрий (подавляющее большинство форм), глюконеогенеза, обмена гликогена. Вторичный лактат-ацидоз наблюдается при некоторых органических ацидуриях, нарушениях митохондриального р-окисления, дефектах цикла мочевины. Концентрация этих метаболитов во многом зависит от физио-логического статуса (до или после пищевой нагрузки), также на уровень лактата оказывают влияние физическая нагрузка и даже стресс, связанный с процедурой взятия крови, особенно у детей раннего возраста. Все это необходимо учитывать при интерпретации биохимических данных. Соотношение концентрации лактат/пируват в крови является важным дифференциально-диагностическим критерием. Биохимически это соотношение отражает соотношение между восстановленной и окисленной формой никотинамиддинуклеотидов в цитоплазме — так называемый окислительный статус цитоплазмы.

Кетоновые тела
Кетоновые тела образуются в печени, их основным источником является b-окисление жирных кислот. Затем они переносятся в различные ткани организма. Соотношение кетоновых тел 3-гидроксибутират/ацетоацетат отражает окислительно-восстановительный статус митохондрий, так как их соот¬ношение связано исключительно с митохондриальным пулом никотинамиддинуклеотидов. b-гидроксибутират в плазме крови относительно стабилен, в отличие от ацетоацетата, который быстро распадается. Многие дефекты митохондриального b-окисления характеризуются низким уровнем кетоновых тел даже после продолжительного голодания, что связано с истощением продукции ацетил-КоА, являющегося основным предшественником кетоновых тел. При митохондриальных болезнях, связанных с дефектами дыхательной цепи митохондрий, наблюдается парадоксальная гиперкетонемия — уро-вень кетоновых тел после пищевой нагрузки значительно повышается (в норме наблюдается повышение концентрации кетоновых тел после продолжительного голодания).

Аммоний
При наследственных болезнях обмена веществ, протекающих по типу острой метаболической декомпенсации, важное значение имеет определение уровня аммония в крови. Значительное повышение аммония в крови наблюдается при наследственных болезнях обмена веществ, обусловленных нарушениями цикла мочевины и обмена органических кислот. При этих заболеваниях концентрация аммония повышается от 200 до 1000 мкм. Гипераммониемия является не только важным дифференциально-диагностическим признаком, но и требует неотложных терапевтических мероприятий, поскольку быстро приводит к тяжелому поражению головного мозга. Важно дифференцировать данное состояние от транзиторной гипераммониемии новорожденных, которая встречается у недоношенных новорожденных с высокими росто-массовыми показателями и клиническими симптомами поражения легких. Уровень аммония при этом состоянии не превышает 200 мкм. Концентрация аммония в крови может повышаться при тяжелом поражении печени. Нормальные значения концентрации аммония в крови: в неонатальный период — менее 110 мкм, у детей более старшего возраста — менее 100 мкм.

Глюкоза
Снижение уровня глюкозы в крови может наблюдаться при ряде наследственных болезней обмена веществ. Прежде всего это относится к нарушениям обмена гликогена и дефектам митохондриального р-окисления, при которых гипогликемия может быть единственным биохимическим изменением, выявляемым при стандартных лабораторных исследованиях. Физиологический ответ на снижение уровня глюкозы в крови - отмена выброса инсулина, выработка глюкагона и других регуляторных гормонов. Это приводит к образованию глюкозы из гликогена в печени и превращению белков в глюкозу в цепи глюконеогенеза. Также активируется липолиз, что приводит к образованию глицерина и свободных жирных кислот. Жирные кислоты транспортируются в митохондрии печени, где происходит их р-окисление и образуются кетоновые тела, а глицерин превращается в глюкозу в цепи глюконеогенеза. Дети имеют гораздо большую потребность в глюкозе, чем взрослые. Считают, что это связано с тем, что соотношение размера головного мозга к телу у детей выше, а головной мозг является основным потребителем глюкозы.

Кроме того, мозг взрослого человека более приспособлен к использованию кетоновых тел в качестве источника энергии, чем мозг ребенка. Именно по этим причинам дети более чувствительны к гипогликемическим состояниям, чем взрослые. При нарушениях обмена гликогена гипогликемия связана с невозможностью образования глюкозы из гликогена, поэтому она более выражена в периоды продолжительного голодания.

Большинство заболеваний из группы дефектов митохондриального b-окисления также сопровождаются снижением уровня глюкозы. Эта группа болезней относится к числу наиболее распространенных наследственных болезней обмена веществ. Причина гипогликемии связана с невозможностью использовать накопленные жиры в период голодания и истощением накопленного гликогена, который становится единственным источником глюкозы и соответственно метаболической энергии. Гипогликемия при дефектах митохондриального b-окисления, в отличие от гликогенозов, не сопровождается гиперкетонемией. Гипогликемия также может встречаться при галактоземии типа I, наследственной непереносимости фруктозы, недостаточности фруктозо-1,6-бифосфатазы.

Метаболический ацидоз
Метаболический ацидоз - одно из частых осложнений при инфекционных заболеваниях, тяжелой гипоксии, дегидратации и интоксикации. Наследственные болезни обмена веществ, манифестирующие в раннем детском возрасте, также нередко сопровождаются метаболическим ацидозом с дефицитом оснований.

Важнейшим критерием в дифференциальной диагностике метаболического ацидоза является уровень кетоновых тел в крови и моче, а также концентрация глюкозы. Если метаболический ацидоз сопровождается кетонурией, это указывает на нарушения метаболизма пирувата, разветвленных аминокислот, нарушения обмена гликогена. Дефекты митохондриального р-окисления, кетогенеза и некоторые нарушения глюконеогенеза не сопровождаются повышением уровня кетоновых тел в крови и моче. Наиболее частые наследственные болезни обмена веществ, протекающие с выраженным метаболическим ацидозом, — пропионовая, метилмалоновая и изовалериановая ацидемии. Нарушения метаболизма пирувата и дыхательной цепи митохондрий, манифестирующие в раннем возрасте, как правило, приводят к выраженному метаболическому ацидозу.

Мочевая кислота
Мочевая кислота — конечный продукт метаболизма пуринов. Пуриновые основания — аденин, гуанин, гипоксантин и ксантин — окисляются до мочевой кислоты. Мочевая кислота синтезируется преимущественно в печени, в кровеносном русле не связана с белками, поэтому практически вся подвергается фильтрации в почках. Повышение концентрации мочевой кислоты в моче строго коррелирует с увеличением ее уровня в плазме крови.

Повышенная продукция и экскреция мочевой кислоты (гиперурикемия и гипер- урикозурия) возникают в результате гиперактивности (уникальное явление среди наследственных болезней обмена веществ) или недостаточности ферментов, участвующих в синтезе пуринов de novo, сберегающих путях их метаболизма, или обусловлена нарушениями образования инозинмонофосфата из аденозинмонофосфата в цикле пуриновых нуклеотидов. Вторичная гиперурикемия также наблюдается при наследственной непереносимости фруктозы, недостаточности фруктозо-1,6-дефосфатазы, гликогенозах I, III, V, VII типа, недостаточности среднецепочечной ацетил-КоА-дегидрогеназы жирных кислот.

АНАЛИЗ МЕТАБОЛИТОВ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ МЕТОДОВ КОЛИЧЕСТВЕННОГО АНАЛИЗА
Хроматографические методы анализа играют важнейшую роль в диагностике наследственных болезней обмена веществ. Современный арсенал хроматографических технологий чрезвычайно широк, что позволяет эффективно и информативно разделять сложные, многокомпонентные смеси, к которым относится и биологический материал. Для количественного анализа метаболитов при наследственных болезнях обмена веществ успешно применяют такие хроматографические методы, как газовая и высокоэффективная жидкостная хроматография, хроматомасс-спектрометрия. Газовая хроматография и высокоэффективная газовая хроматография — самые универсальные методы разделения сложных смесей соединений, отличаются высокой чувствительностью и воспроизводимостью. В обоих случаях разделение осуществляется в результате различного взаимодействия компонентов смеси с неподвижной и подвижной фазами хроматографической колонки. Для газовой хроматографии подвижной фазой является газноситель, для высокоэффективной газовой хроматографии — жидкость (элюент). Выход каждого соединения фиксируется детектором прибора, сигнал которого преобразуется в пики на хроматограмме. Каждый пик характеризуется временем удерживания и площадью. Следует отметить, что газовая хроматография проводят, как правило, при высокотемпературном режиме, поэтому ограничением для ее применения является термическая неустойчивость соединений. Для высокоэффективной газовой хроматографии не существует подобных ограничений, так как в этом случае анализ проводят в мягких условиях. Хроматомасс-спектрометрия представляет собой комбинированную систему газовой хроматографии или высокоэффективной газовой хроматографии с масс-селективным детектором, что позволяет получать не только количественную, но и качественную информацию, т. е. дополнительно определяется структура соединений в анализируемой смеси. 

Органические кислоты
В биохимической генетике термин «органические кислоты» относится к небольшим (молекулярная масса — менее 300 кДа), растворимым в воде карбоновым кислотам, которые являются промежуточными или конечными продуктами мета-болизма аминокислот, углеводов, липидов и биогенных аминов.

Для определения органических кислот применяют разнообразные хроматографические методы: высокоэффективную жидкостную хроматографию, хроматомасс-спектрометрию и высокоэффективную газовую хроматографию с последующей тандемной масс-спектрометрией. Более 250 различных органических кислот и глициновых конъюгатов можно обнаружить в образце мочи. Их концентрация зависит от диеты, приема лекарственных препаратов и некоторых других физиологических причин. Известно около 65 наследственных болезней обмена веществ, которые характеризуются специфическим профилем органических кислот. Относительно небольшое количество органических кислот высокоспецифичны, наличие их в больших концентрациях в моче позволяет точно установить диагноз: сукцинилацетон при тирозинемии типа I, N-ацетиласпартат при болезни Канавана, мевалоновая кислота при мевалоновой ацидурии. В подавляющем большинстве случаев диагноз наследственных болезней обмена веществ на основании только анализа органических кислот мочи установить довольно трудно, поэтому требуется дополнительная, подтверждающая диагностика.

Интерпретация результатов анализа органических кислот мочи представляет определенные проблемы как из-за большого количества экскретируемых кислот и их производных, так и из-за наложения профилей некоторых лекарственных метаболитов. Для точной диагностики данные, полученные при анализе органических кислот, должны коррелировать с клинической характеристикой заболевания и быть подтверждены результатами других лабораторных методов анализа (анализа аминокислот, лактата, пирувата, ацилкарнитинов в крови, активностью ферментов и молекулярно-генетическими данными).

Концентрация органических кислот при наследственных болезнях обмена веществ характеризуется достаточно широким диапазоном — от повышения их уровня в несколько сотен раз до незначительного превышения, близкого к нормальному. Например, при глутаровой ацидурии типа I уровень глутаровой кислоты у некоторых больных может находиться в пределах нормы; при недостаточности среднецепочечной ацетил-КоА-дегидрогеназы жирных кислот концентрация адипиновой, себациновой и субериновой кислот может быть в пределах нормы. Обнаружить аномальный профиль органических кислот мочи иногда бывает возможно только у пациентов в стадии метаболической декомпенсации. Особенно это характерно для доброкачественных, мягких форм заболеваний, которые, как правило, поздно манифестируют.

Аминокислоты и ацилкарнитины
Определение концентрации аминокислот и ацилкарнитинов проводят методом тандемной масс-спектрометрии. Масс-спектрометрия — аналитический метод, с помощью которого можно получать как качественную (структура), так и количественную (молекулярная масса или концентрация) информацию анализируемых молекул после их преобразования в ионы. Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что в масс-спектрометре определяется непосредственно масса молекул и их фрагментов. Результаты представляются графически (так называемый масс-спектр). Иногда невозможно анализировать многокомпонентные, сложные смеси молекул без их предварительного разделения. Разделить молекулы можно либо хроматографически, либо использовать два последовательно соединенных масс-спектрометра — тандемная масс-спектрометрия. Метод тандемной масс-спектрометрии впервые был применен в 70-х гг. прошлого века и нашел применение в химии, биологии и медицине. Этот метод применяют для выяснения структуры неизвестных веществ, а также для анализа комплексных смесей с минимальной очисткой образцов.

Перед масс-спектрометрическим анализом необходимо превращение нейтральных частиц вещества в заряженные ионы, а также перевод их из жидкого состояния в газообразное. Для этой цели сначала применяли метод ионизации бомбардированием быстрыми атомами, в последнее время предпочтение отдается методу ионизации в электроспрее. С появлением новых методов ионизации применение тандемной масс-спектрометрии в области аналитической биохимии стало более доступным. Впервые анализ ацилкарнитинов с помощью тандемной масс-спектрометрии выполнили Дэвид Миллингтон и соавт., применившие химическую дериватизацию биологических образцов для образования бутиловых эфиров ацилкарнитинов. В 1993 г. Дональд Чейз и соавт. адаптировали этот метод для анализа аминокислот в высушенных пятнах крови, сформировав, таким образом, основу для скрининга множества компонентов при наследственных болезнях обмена веществ. В дальнейшем метод был адаптирован к проведению крупномасштабных анализов, необходимых для неонатального скрининга.

Тандемная масс-спектрометрия-анализ наиболее эффективен для соединений, имеющих сходные дочерние ионы или нейтральные молекулы, например для анализа аминокислот и ацилкарнитинов. Необходимо также подчеркнуть возможность МС/МС-анализа различных химических групп в одном анализе за очень короткое время (~2 мин). Это обеспечивает широкий спектр анализов и высокую пропускную способность, что экономически выгодно для скрининга на большое количество заболеваний. На основании повышения концентрации определенных ацилкарнитинов можно заподозрить заболевания из группы нарушений митохондриального р-окисления по изменению профиля аминокислот — аминоацидопатии. С помощью тандемной масс-спектрометрии можно детектировать посторонние метаболиты желчных кислот, появляющихся при нарушениях метаболизма холестерина и липидов, желчных кислот, а также при дефектах биогенеза пероксисом. При различных холестатических гепатобилиарных нарушениях (хроническом заболевании печени неизвестной этиологии, синдроме Цельвегера, недостаточности пероксисомного бифункционального белка, тирозинемии типа I, билиарной атрезии, прогрессивном фамильном внутрипеченочном холестазе неопределенного типа) с помощью тандемной масс-спектрометрии можно определять концентрации конъюгированных желчных кислот в различных биологических жидкостях.

Описаны методы определения очень длинноцепочечных жирных кислот: эйкозановой (С20:0), докозановой (С22:0), тетракозановой (С24:0), гексакозановой (С26:0), а также фитановой и пристановой кислот — с помощью тандемной масс-спектрометрии в плазме и пятнах крови, потенциально годные для скрининга многих пероксисомных болезней.

Диагностика нарушений метаболизма пуринов и пиримидинов (недостаточности пуриннуклеозидфосфорилазы, орнитинтранскарбамилазы, молибденового кофактора, аденилосукциназы, дегидропиримидиндегидрогеназы) основана на присутствии аномальных метаболитов или отсутствии нормальных метаболитов в сыворотке, моче или клетках крови. Так, разработаны быстрые методы тандемной масс-спектрометрии, позволяющие количественно определять от 17 до 24 пуринов и пиримидинов в моче в одном анализе.

Тандемную масс-спектрометрию также можно использовать для исследования других классов метаболитов. Так, разработан новый метод тандемной масс-спектрометрии измерения тотального гексозмонофосфата в пятнах крови, маркера галактозо-1-фосфата, который можно использовать при скрининге на галактоземию.

Определение катехоламинов в моче является важным для диагностики нарушения метаболизма катехоламинов и нейротрансмиттеров. Значительными недостатками существующих методов являются долгое время анализа и возможная интерференция лекарств и их метаболитов, структурно схожих с катехоламинами. Новые методы в комбинации с пробоподготовкой, специфичной к соединениям, содержащим катехольные группы, позволяет быстро диагностировать эту группу заболеваний, исключая недостатки ВЭЖХ-методов.

Исследование белков
Подавляющее большинство наследственных болезней обмена веществ обусловлено нарушением активности ферментов, поэтому в диагностике этих заболеваний выявление снижения активности специфических ферментов является важнейшим, а иногда и единственным надежным методом подтверждения диагноза.

ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ
В настоящее время пост- и пренатальная диагностика многих наследственных болезней обмена веществ (прежде всего это относится к лизосомным болезням накопления) осуществляется с помощью методов анализа ферментативной активности. Материалом для измерения активности ферментов при наследственных болезнях обмена веществ являются прежде всего лейкоциты периферической крови: практически при всех лизосомных болезнях накопления, метилмалоновой ацидурии, некоторых гликогенозах. Для диагностики GM2- ганглиозидозов, недостаточности биотинидазы используют плазму или сыворотку крови. В некоторых случаях объектами исследования являются мышечная или печеночная ткань, культура кожных фибробластов.

Субстраты для ферментов могут быть хромогенными, флюорогенными, содержать радиоактивную метку. Для измерения активности ферментов применяют спектрофотометрический, флюориметрический и методы измерения радиоактивности. Общий принцип применения флюорогенных субстратов состоит в том, что субстрат представляет собой химическое производное флюорохрома, неспособное к флюоресценции в исходном состоянии, но под действием молекул соответствующих ферментов субстрат каталитически расщепляется с высвобождением флюорохрома, флюоресценцию которого можно измерить. Спектрофотометрические методы позволяют измерять поглощение продуктами ферментативной реакции, полученными после внесения хромогенных субстратов. Для многих ферментов (например, дегидрогеназ) образующиеся продукты реакции могут быть хромогенными. Имеется достаточно много флюорогенных субстратов для исследования различных ферментов: эстераз разной специфичности, пероксидаз, пептидаз, фосфатаз, сульфатаз, липаз и др. Радиоактивно-меченые субстраты применяют в диагностике органических ацидурий, дефектов митохондриального Р-окисления, нарушениях метаболизма углеводов, лизосомных болезнях накопления.

Для каждой ферментативной реакции необходимы определенные условия: pH и состав буферной смеси, специфический субстрат(-ы), наличие активаторов и кофакторов, температурный режим и т. д. Практически каждая клетка содержит свой набор ферментов, поэтому их распределение в тканях значительно варьирует. Многие ферменты представлены в тканях различными формами (изоферментами). В большинстве случаев это связано с наличием полипептидных субъединиц, которые, соединяясь, формируют разные изоферменты. Распределение изоферментов может варьировать от ткани к ткани. Некоторые ферменты встречаются только в определенном органе или ткани. 

Лизосомные болезни накопления
Определение активности ферментов является «золотым стандартом» подтверждающей диагностики лизосомных болезней накопления. Для анализа активности ферментов используют хромогенные и флюорогенные субстраты. Флюорогенные субстраты на основе 4-метилумберифелона всегда очень чувствительны; с их помощью можно определять активность ферментов даже в микроколичествах биологического материала (пятнах высушенной крови). Как правило, активность ферментов у пациентов с лизосомными болезнями накопления составляет менее 10% нормы, и при биохимическом тестировании постановка точного диагноза не составляет значительных затруднений. Существует ряд факторов, затрудняющих интерпретацию биохимических исследований. Один из них — наличие аллелей «псевдонедостаточности», которые приводят к изменениям структуры фермента и не позволяют белку адекватно расщеплять искусственный субстрат in vitro, при этом с естественным субстратом данный фермент не показывает снижения активности. Это явление описано для арилсульфатазы А, р-галактозидазы, p-глюкоронидазы, а-идуронидазы, а-галактозидазы, галактоцереброзидазы.

Исследование мутантных генов
Развитие методов молекулярной биологии явилось настоящей революцией в области клинической биохимии. Разработка стандартных протоколов молекулярных исследований и автоматизация используемых методов сегодня — законченный комплекс диагностических подходов, который может стать рутинной процедурой в клинических лабораториях. Быстрое развитие исследований в области расшифровки генома человека и определение ДНК-последовательности генов делает возможной ДНК-диагностику различных наследственных заболеваний. Методы ДНК-диагностики, анализа структуры нормальных генов и их мутантных аналогов при наследственных болезнях обмена начали использовать в течение последнего десятилетия.

Для ДНК-диагностики наследственных заболеваний используют два основных подхода — прямую и косвенную ДНК-диагностику. Прямая ДНК-диагностика представляет собой исследование первичной структуры поврежденного гена и выделение мутаций, ведущих к заболеванию. Для детекции молекулярных повреждений в генах, обусловливающих наследственные болезни, используют стандартный арсенал методов молекулярной биологии. В зависимости от характеристики и типов мутаций, распространенности при различных наследственных заболеваниях те или иные методы являются более предпочтительными.

Для диагностики наследственных болезней обмена веществ в тех случаях, когда биохимический дефект точно известен, легко и достоверно определяем с использованием биохимических методик, ДНК-методы вряд ли займут приоритетное место. В этих случаях применение ДНК-анализа является скорее научно-исследовательским, а не диагностическим подходом. После точно установленного диагноза методы ДНК-анализа будут полезны для последующей пренатальной диагностики, идентификации гетерозиготных носителей в семье и прогноза заболевания у гомозигот, а также для отбора больных в целях проведения казуальной терапии в будущем (ферментозаместительной и генотерапии). Также в случаях, когда биохимический дефект точно не известен, биохимическая диагностика затруднена, недостаточно достоверна или требует инвазивных методов исследования, метод ДНК-диагностики - единственный и незаменимый для точной постановки диагноза.

В общем виде тактика проведения диагностики наследственных болезней обмена веществ в каждом конкретном случае должна планироваться совместно с врачом-биохимиком и врачом-генетиком. Необходимыми условиями успешной и быстрой диагностики являются понимание этиологии, механизмов патогенеза заболевания, знание специфических биохимических маркеров.

Лабораторный контроль качества
Одна из важнейших составляющих любой лабораторной диагностики — посто-янный контроль качества проводимых исследований. В такой сложной и многогранной области, как наследственные болезни обмена веществ, внешний и внутренний контроль качества приобретает особое значение. Это связано с тем, что лаборатория имеет дело с редкими заболеваниями, и, как правило, приобрести опыт по диагностике каждой из болезней в достаточном количестве не представляется возможным. Кроме того, лабораторное оборудование и методические подходы могут различаться между разными лабораториями.

Оцените статью: (9 голосов)
3.56 5 9

Статьи из раздела Лабораторная диагностика на эту тему:
Массовый скрининг новорожденных на наследственные болезни обмена веществ
Цитогенетическая диагностика хромосомных болезней


Новые статьи

» Стронгилоидоз
Стронгилоидоз
Стронгилоидоз - хронически протекающий геогельминтоз с преимущественным поражением ЖКТ и общими аллергическими проявлениями. Основной источник заражения стронгилоидозом - больной человек. Некоторые... перейти
» Трихинеллез
Трихинеллез
Трихинеллез у человека - это острый зооноз с природной очаговостью, протекающий с лихорадкой, мышечными болями, отеком лица, кожными высыпаниями, высокой эозинофилией, а при тяжелом т... перейти
» Энтеробиоз
Энтеробиоз
Энтеробиоз - кишечный гельминтоз, вызываемый мелкой нематодой Enterobius vermicularis, со стертым и невыраженным течением, наиболее распространенный признак которого - перианальный зуд, возникающий на... перейти
» Аскаридоз
Аскаридоз
Аскаридоз - кишечный гельминтоз, вызываемый нематодой Ascaris lumbricoides, протекающий с поражением ЖКТ, интоксикацией, аллергическими реакциями. Аскаридоз - один из самых распространенных гельмин... перейти
» Альвеококкоз
Альвеококкоз
Альвеококкоз (Alveococcosis) - зоонозный биогельминтоз, вызываемый личиночной стадией цепней Echinococcus multilocularis, с хроническим прогрессирующим течением, развитием в печени и других органах мн... перейти
» Эхинококкоз
Эхинококкоз
Эхинококкоз (Echinococcosis) - зоонозный биогельминтоз, вызываемый личиночной стадией цепня Echinococcus granulosus, характеризуемый хроническим течением и развитием преимущественно в печени, реже в л... перейти